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Abstract

A parametric investigation is carried out on the effects of temperature dependent viscosity in simultaneously developing laminar flow
of a liquid in straight ducts of arbitrary but constant cross-sections. Viscosity is assumed to vary with temperature according to an expo-
nential relation, while the other fluid properties are held constant. Different cross-sectional geometries are considered, corresponding
both to three-dimensional (rectangular, trapezoidal and hexagonal) and to axisymmetric (circular and concentric annular) duct geo-
metries. Uniform wall temperature boundary conditions are imposed on the heated/cooled walls of the ducts. A finite element procedure
is employed for the solution of the parabolized momentum and energy equations. Computed axial distributions of the local Nusselt num-
ber and of the apparent Fanning friction factor for ducts of the considered cross-sections are presented with reference to both fluid heat-
ing and fluid cooling. Numerical results confirm that, in the laminar forced convection in the entrance region of straight ducts, the effects
of temperature dependent viscosity cannot be neglected in a wide range of operative conditions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In many duct flows of practical interest, velocity and
temperature fields develop simultaneously, resulting in
overlapping hydrodynamic and thermal entrance regions.
This occurs when fluid heating or cooling begins at the duct
inlet, where the velocity boundary layer also starts develop-
ing. In such a situation, entrance effects on fluid flow and
forced convection heat transfer cannot be neglected if, as
it happens quite often in laminar flows, the total length
of the duct is comparable with that of the entrance region.
Moreover, temperature dependence of fluid properties can
also play an important role in the development of the
velocity and temperature fields. If the fluid is a liquid, vis-
cosity is the property which exhibits the most relevant vari-
ations with respect to temperature. Therefore, the main
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effects of temperature dependent fluid properties can be
retained even if only viscosity is allowed to vary with tem-
perature, while the other properties are assumed constant.
Even if these effects have already been considered in the
past, to the authors’ knowledge no systematic studies are
reported in the literature taking into account the combina-
tion of entrance and temperature dependent viscosity
effects.

In the past decades, many authors have investigated,
both analytically and numerically, simultaneously devel-
oping flows in straight ducts of constant cross-section.
Comprehensive reviews of these theoretical studies, refer-
ring to ducts of different cross-sectional geometries, can
be found in [1,2]. However, since a basic assumption
made in almost all such studies is that fluid properties
are constant, the corresponding solutions are adequate
only for problems involving small temperature differences.
In fact, experimental results for problems involving
large temperature differences substantially deviate from
constant property solutions [1,3]. However, it must be
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Nomenclature

A area of the cross-section (m2)
a height of the cross-section (m)
B parameter in Eq. (13) (=�ln(le/lw))
b base of the cross-section (m)
c specific heat (J/kg K)
Dh hydraulic diameter (m)
f Fanning friction factor (–)
h local convection coefficient (W/m2 K)
k thermal conductivity (W/m K)
Nu Nusselt number (=hDh/k)
P perimeter of the cross-section (m)
Pt heated/cooled perimeter (m)
Pe Péclet number (=Re Pr)
Pr Prandtl number (=lc/k)
p deviation from the hydrostatic pressure (Pa)
q 0 heat transfer rate per unit length (W/m)
q00 heat flux (W/m2)
R dimensionless radial coordinate (=r/ro)
Re Reynolds number (=queDh/l)
r radial coordinate (m)
T dimensionless temperature (=(t � tw)/(te � tw))
T 0 dimensionless temperature (=(t � tw)/(tb � tw))
t temperature (�C)
U dimensionless axial velocity (=u/ue)
u, v, w velocity components (m/s)

X+ dimensionless axial coordinate (=x/DhRem)
X* dimensionless axial coordinate (=x/DhPe)
x axial coordinate (m)
y, z transverse Cartesian coordinates (m)
Z dimensionless transverse coordinate (=z/Dh)

Greek symbols

b parameter in Eq. (12) (1/K)
c aspect ratio of the cross-section (=a/b)
l dynamic viscosity (kg/m s)
q density (kg/m3)

Subscripts and superscripts

0 centerline
a apparent
b bulk
c constant property
e entrance
i inner
m reference, evaluated at tm

o outer
w wall
– average value
1 asymptotic value
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mentioned that, for engineering applications, the effects of
property variations are usually taken into account by
adjusting constant property solutions by means of correc-
tion factors with only limited empirical and theoretical
justification, thus leading to some ambiguity and awk-
wardness [1].

As anticipated above, for most liquids, density, specific
heat and thermal conductivity are nearly independent of
temperature, while viscosity markedly decreases with
increasing temperature, in much the same manner as the
Prandtl number does [3]. Thus, the constant property
assumption, with the exception of viscosity, which is still
allowed to vary with temperature, is adequate for most
liquid flows, no matter how large the temperature differ-
ences are. Because of the relative complexity of tempera-
ture dependent property problems, only a limited number
of such solutions for laminar forced convection in simulta-
neously developing flow in ducts have appeared in the liter-
ature [1]. However, most of these studies are based on the
assumption of a viscosity dependence on temperature given
by a specific relation of empirical nature [3–7], leading to
results which cannot be considered general and applicable
to other liquids or for different temperature ranges. Similar
considerations can be made with respect to studies con-
cerning thermally or simultaneously developing flows in
microchannels [8–11].
In this paper, we present the results of a parametric
study on the simultaneously developing laminar flow of a
liquid in straight ducts of arbitrary, but constant, cross-
sections. The effects of temperature dependent viscosity
on pressure drop and heat transfer are investigated, while
the other liquid properties are considered constant. An
extended version of the finite element procedure described
in [12] is employed for the step-by-step solution of the
parabolized momentum and energy equations [13,14] in a
two-dimensional domain corresponding to the cross-
section of the duct. In most situations of practical interest,
because of the high value of the ratio between the total
length and the hydraulic diameter, such an approach is
very advantageous with respect to the one based on the
steady-state solution of the elliptic form of the governing
equations in a three-dimensional domain corresponding
to the whole duct. New results concern different cross-
sectional geometries, chosen among those usually adopted
for ducts (circular, rectangular and concentric annular [1])
and for microchannels (trapezoidal and hexagonal [15,16]).
In all the cases studied here, reference is made to uniform
wall temperature boundary conditions, while viscosity is
assumed to have an exponential variation with temperature
in the range considered [3,6,7,17–19]. In order to allow a
parametric investigation, a suitable dimensionless form of
the assumed viscosity-temperature relation is used.
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2. Mathematical model and numerical procedure

When the effects of axial diffusion can be neglected and
there is no recirculation in the longitudinal direction,
steady-state flow and heat transfer in straight ducts of con-
stant cross-sections are governed by the continuity equa-
tion and by the parabolized Navier–Stokes and energy
equations [13,14]. Since the inverse of the Reynolds num-
ber is representative of the relative importance of diffusive
and advective components of the axial momentum flow
rate, while the inverse of the Péclet number is representa-
tive of the relative importance of conductive and advective
components of the axial heat flow rate, the parabolic
approximation of the Navier–Stokes and energy equations
can be considered adequate, except in the immediate neigh-
borhood of the inlet, for values of the Reynolds and Péclet
numbers larger than 50 [1,20].

With reference to incompressible fluids with temperature
dependent thermophysical properties, in the hypotheses of
negligible body forces and negligible viscous dissipation,
the above mentioned equations can be written in the fol-
lowing forms, valid for three-dimensional and axisym-
metric geometries, respectively. For three-dimensional duct
geometries, the governing equations are
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while, for axisymmetric duct geometries, they become
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According to the assumption of parabolic flow, all the
derivatives in the axial direction are neglected in the diffu-
sive terms of the above equations [14]. In the set of equa-
tions valid for three-dimensional geometries, x, y and z

are the axial and the transverse coordinates, respectively,
while u, v and w represent the axial and the transverse com-
ponents of velocity. In the axisymmetric equations, sym-
bols r and v denote the radial coordinate and the radial
component of velocity. Finally, t is the temperature, p is
the deviation from the hydrostatic pressure, �p is its average
value over the cross-section, while q, l, c and k represent
density, dynamic viscosity, specific heat and thermal con-
ductivity of the fluid, respectively.

The solution domain can be bounded by rigid walls or
symmetry axes. The usual no-slip conditions are applied
on rigid boundaries, that is, u = v = w = 0 for three-dimen-
sional geometries and u = v = 0 in the axisymmetric cases,
while either the temperature is prescribed (t = tw) or the
wall is assumed adiabatic (ot/on = 0). Symmetry condi-
tions, instead, are ou/oy = ow/oy = 0, v = 0 and ot/oy = 0
on boundaries perpendicular to the y axis, ou/oz =
ov/oz = 0, w = 0 and ot/oz = 0 on boundaries perpendicu-
lar to the z axis for three-dimensional geometries, and
ou/or = 0, v = 0 and ot/or = 0 at the symmetry axis in axi-
symmetric problems.

The model equations are solved using a finite element
procedure which represents an extended version of the
one previously developed for the analysis of the forced con-
vection of constant property fluids in the entrance region of
straight ducts [12]. The added new features mainly consist
in the possibility of analyzing flows of incompressible fluids
with temperature dependent properties. The adopted pro-
cedure is based on a segregated approach which implies
the sequential solution of the momentum and energy equa-
tions on a two-dimensional domain in the case of three-
dimensional geometries and on a one-dimensional domain
in axisymmetric problems. A marching method is then used
to move forward in the axial direction of the duct. The
pressure–velocity coupling is dealt with using an improved
projection algorithm already employed by one of the
authors (C.N.) for the solution of the Navier–Stokes equa-
tions in their elliptic form [21].

Most of the features of the adopted solution algorithm
and of the finite element discretization procedure can be
found in [12], where reference is made to a constant prop-
erty fluid and to the dimensionless forms of the governing
equations. Since this description can be easily adapted to
the case of a fluid with temperature dependent properties
considered here, only the details concerning the estimation
of the average pressure gradient d�p=dx, which is necessary
to solve the momentum equation in the axial direction, are
reported in this paper. With reference to the flow in straight
ducts, integration of the axial momentum equation over
the cross-section A gives [1,12]
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In the previous equation P is the perimeter of the cross-sec-
tion and n denotes the direction of the outer normal to the
boundary, while K and L represent the axial momentum
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Fig. 1. Graphical representation of the temperature dependence of the
local Prandtl number for different values of the ratio Pre/Prw.
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rate and the wall viscous force per unit length, respectively,
referred to the unit area of the cross-section. Their defini-
tions can be directly inferred from the above equation. In
the marching procedure from the nth to the (n + 1)th axial
locations, the following approximation for the average
pressure gradient is used:

� d�p
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where the asterisk (*) indicates an estimated value. The
backward formula employed in Eq. (11) for the evaluation
of (dK/dx)* has been adopted to increase stability since we
observed that more accurate second order approximations
very often led to the divergence of the simulations. How-
ever, it must be pointed out that this choice does not affect
the overall accuracy of the numerical results if, as will be
detailed later, very small axial steps are adopted where
the variations of the axial pressure gradient are significant,
that is, in the region very close to the duct entrance.

3. Numerical results

As stated above, laminar forced convection in the
entrance region of straight ducts of constant cross-sections
with uniform wall temperature tw is studied. The hypothe-
sis made here is that liquid heating/cooling begins at the
duct inlet, where the velocity boundary layer also starts
developing. Therefore, at the entrance of the duct, uniform
values of the axial velocity ue and of the temperature te are
specified as the appropriate inlet conditions.

The dynamic viscosity is assumed to vary with tempera-
ture and le and lw are its values at te and tw, respectively.
The ratio of le over lw gives an indication of the relevance
of the temperature dependence of viscosity in the range
between te and tw. Exponential or Arrhenius type relations
are usually employed to represent the temperature depen-
dence of viscosity. The one adopted in this paper is the
widely used exponential formula [3,6,7,17–19]

l ¼ lw exp½�bðt � twÞ� ð12Þ
with b = �(dl/dt)/l = const. By means of simple manipu-
lations, Eq. (12) can be cast in the following dimensionless
forms:

l
lw

¼ expð�BT Þ ¼ le

lw

� �T

ð13Þ

where T = (t � tw)/(te � tw) is the dimensionless tempera-
ture and B = �ln(le/lw) is a dimensionless viscosity
parameter.

It is worth noting that, since all the other thermophysi-
cal properties are assumed constant, we have le/lw =
Pre/Prw = Rew/Ree. Moreover, while the local Reynolds
number Re = queDh/l and the local Prandtl number
Pr = lc/k depend on temperature, the local Péclet number
Pe = Re Pr = ReePre = Rew Prw always has the same value.
Since the viscosity of liquids decreases with increasing tem-
perature, Pre/Prw > 1 corresponds to fluid heating (te < tw)
and Pre/Prw < 1 to fluid cooling (te > tw), while Pre/Prw =
1 refers to isothermal flows (te = tw) or to constant viscosity
fluids.

In all the computations, the same values Rem =
queDh/lm = 500 and Prm = lmc/k = 5 of the Reynolds
and Prandtl numbers at the reference temperature of the
fluid tm = (te + tw)/2 have been assumed. The correspond-
ing value of the Péclet number is Pe = 2500. Therefore,
for the values of the ratio Pre/Prw = 1/4, 1/2, 1, 2 and 4
considered here, minimum and maximum values of the
local Reynolds number in the temperature range between
te and tw are 250 and 1000, respectively, while the Prandtl
number can vary between 2.5 and 10. Fig. 1 illustrates the
temperature dependence of the local Prandtl number for
the different values of the ratio Pre/Prw.

In the following, numerical results concerning axial dis-
tributions of the local Nusselt number Nu = hDh/k and of
the apparent Fanning friction factor fa are presented. The
local convection coefficient h, averaged over the heated/
cooled perimeter of the cross-section, can be computed as

h ¼ q0w
P tðtb � twÞ

ð14Þ

for three-dimensional geometries, and as

h ¼ q00w
tb � tw

ð15Þ

for axisymmetric geometries. In the above equations, q0w
and q00w are the wall heat transfer rate per unit length and
the wall heat flux, respectively, Pt is the heated/cooled
perimeter of the cross-section and tb is the bulk tempera-
ture. The apparent Fanning friction factor is defined as [1]

fa ¼
ð�pe � �pÞDh

2qu2
ex

ð16Þ

It must be pointed out that, even if the numerical results re-
ported in the following have been obtained for Rem = 500
and Prm = 5, they are much more general that what they
appear to be. In fact, for a given reference Prandtl number
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Prm, the axial distributions of Nu and faRem are indepen-
dent of the reference Reynolds number Rem provided that
the appropriate dimensionless axial coordinates X* =
x/DhPe or X+ = x/DhRem are employed. Moreover, the
influence of the reference Prandtl number Prm on Nu and
faRem distributions is significant only in the first part of
the microchannel, i.e., near the entrance. The validity of
the above statements, which is well established for constant
property flows, has been verified, by means of sample
numerical tests, also under the variable viscosity assump-
tion in the ranges 1/4 6 le/lw 6 4, 250 6 Rem 6 1000 and
2 6 Prm 6 20.

Nine different cross-sectional geometries are considered
in this study, corresponding to both three-dimensional
and axisymmetric duct geometries. The former group (five
geometries) includes rectangular ducts with aspect ratios
c = a/b equal to 0 (parallel plates), to 0.5 and to 1 (square
duct) and two geometries chosen among those usually
adopted for silicon microchannels, namely trapezoidal with
c = a/b = 0.414 and hexagonal (or double-trapezoidal)
with c = a/b = 0.828. Symbols a and b denote the height
and the width of the cross-section, respectively. The
cross-section of the trapezoidal duct is an isosceles trape-
zium with the larger base b and height a and a 54.74� angle
between sides and the larger base, while that of the hexa-
gonal duct corresponds to two of such trapezia joined
along the larger base [15,16]. Details of trapezoidal and
hexagonal cross-sections are reported in Fig. 2. Axisym-
metric geometries include circular ducts and three concen-
tric annular ducts with ri/ro = 0.5, 0.75 and 1 (parallel
plates), where ri and ro are the inner and the outer radii
of the duct, respectively. Thermal boundary conditions
on solid walls are of the Dirichlet type (t = tw) for all the
54.74

54.74
a

a

b b

b

a

°

°

Fig. 2. Schematic representation of two cross-sections used in silicon
microchannels: (a) trapezoidal with c = 0.414 and (b) hexagonal with
c = 0.828.
geometries considered except for the annular ducts where
a uniform temperature is imposed on the inner wall, while
the outer wall is assumed adiabatic. Thus, the annular duct
with ri/ro = 1 is a parallel plate duct with one adiabatic
wall. Computational domains have been defined taking
existing symmetries into account. Therefore, for the circu-
lar and concentric annular cross-sections the domains are
one-dimensional and axisymmetric and have lengths ro

and ro � ri, respectively. Instead, for the parallel plate
channel the domain is a rectangle of unit base and height
a/2, while for the trapezoidal channel reference is made
to the two-dimensional domain of base b/2 and height a

corresponding to one half of the cross-section. Finally,
for the rectangular and hexagonal channels the domains
are represented by the regions of base b/2 and height a/2
corresponding to a quarter of the whole cross-sections.

One-dimensional domains have been discretized by
means of three-node parabolic elements, while two-dimen-
sional ones have been subdivided into nine-node Lagrang-
ian parabolic elements. A total of 40 elements and 81 nodal
points have been used in the discretization of the 1-D
domain corresponding to the circular cross-section, and a
total of 80 elements and 161 nodal points in that of the
1-D domain corresponding to the concentric annular
cross-sections. A total of 50 elements and 303 nodal points
have been used in the discretization of the 2-D domain (one
row of elements) corresponding to the cross-section of the
parallel plate channel, while discretizations of rectangular
cross-sections with c = 0.5 and 1 have led to meshes with
a total of 216 and 225 elements and 925 and 961 nodal
points, respectively. Finally, the discretization of the trap-
ezoidal cross-section required 360 elements and 1517 nodal
points and that of the hexagonal cross-section 216 elements
and 925 nodal points.

In all the meshes, element sizes gradually increase with
increasing distance from the walls. The minimum and
maximum values of the dimensionless distances between
adjacent nodes Dy/Dh and Dz/Dh, or Dr/Dh, measured in
the transverse or in the radial directions, respectively, are
reported in Table 1 for all the cross-sectional geometries
considered. The adopted meshes are fine enough near the
walls to allow an accurate representation of the steep veloc-
ity and temperature gradients taking place there as the flow
Table 1
Minimum and maximum values of the dimensionless distances between
adjacent nodes Dy/Dh and Dz/Dh, or Dr/Dh, in the finite element meshes
employed for the numerical simulations

Cross-section Dymin/Dh or
Drmin/Dh

Dzmin/Dh Dymax/Dh or
Drmax/Dh

Dzmax/Dh

Circular 0.0003 – 0.0122 –
Parallel plates 0.0001 – 0.0041 –
Square 0.0062 0.0062 0.0247 0.0247
Rectangular 0.0066 0.0069 0.0247 0.0310
Trapezoidal 0.0029 0.0039 0.0580 0.0428
Hexagonal 0.0019 0.0023 0.0449 0.0252
Annular (all ri/ro) 0.0002 – 0.0061 –
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develops. Of course, preliminary tests had been carried out
to verify that all these discretizations are fine enough to give
mesh-independent results. In all the computations, the axial
step has gradually been increased from the starting value
Dx/Dh = 0.0001 to the maximum value Dx/Dh = 0.5. As
the initial value of the axial step is very small, the strong
variations of the axial pressure gradient arising in the first
part of the microchannel can be adequately captured.

The procedure outlined in the previous section had
already been validated, on the assumption of constant
property fluid, by comparing heat transfer and pressure
drop results with existing literature data for simultaneously
developing laminar flows in straight ducts [12]. In order to
assess the accuracy of the present computations, asymp-
totic values of the Nusselt number (Nu1)c and fully devel-
oped values of the Poiseuille number (fRe)c for flows of
constant property fluids are compared in Table 2 with
available literature data. Computed asymptotic values of
the Nusselt number for trapezoidal and hexagonal ducts,
for which no comparison data are available, are also
included in Table 2 for the sake of completeness. Compar-
ison data of (Nu1)c and (fRe)c have been found in [1], with
the exception of the values of (fRe)c for trapezoidal and
hexagonal ducts which have been taken from [16]. As can
be seen, all computed values are in very good agreement
with the corresponding literature values, thus confirming
the accuracy of present computations.

The effects of temperature dependent viscosity on heat
transfer and pressure drop are illustrated here with refer-
Table 2
Comparisons of calculated and literature values of (Nu1)c and (fRe)c for cons

Cross-section Circular Parallel plates Square Rectangula

c or ri/ro 0 1 0.5

(Nu1)c Calc. 3.65680 7.54075 2.9775 3.3922
Ref. 3.65679 7.54070 2.976 3.391

(fRe)c Calc. 16.0000 24.0000 14.2270 15.5480
Ref. 16 24 14.2271 15.5481
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Fig. 3. Flows of constant property fluids with Pr = 5 in three-dimensional du
c = 1 (square), trapezoidal with c = 0.414 and hexagonal with c = 0.828): axial
ence to axial distributions of the local Nusselt number
Nu and of the product faPe for ducts of different cross-sec-
tions. To facilitate the analysis of results, axial distribu-
tions of the local Nusselt number Nuc and of the product
(faPe)c for developing constant property flows in three-
dimensional ducts (i.e., parallel plate, square, rectangular,
trapezoidal and hexagonal ducts) and axisymmetric ducts
(i.e., circular and concentric annular ducts) are reported
in Figs. 3 and 4, respectively, while axial distributions of
the ratios Nu/Nuc and faPe/(faPe)c are presented in Figs.
5–13 for different cross-sectional geometries. Available lit-
erature data for (faPe)c from Ref. [1] are also reported
for comparison in Figs. 3(b) and 4(b). In all these figures,
reference is made to the dimensionless axial coordinate
X* = x/DhPe. This choice, which is standard when axial
distributions of Nu are displayed, is made here also for
axial distributions of faPe, according to [22], because of
the temperature dependence of viscosity. It should also
be noted that a given value of X* corresponds to the same
physical distance from the inlet for all values of the ratio
Pre/Prw. In order to allow Nu and faPe to reach their
asymptotic values, the ranges between 0.0001 and 1 and
between 0.0001 and 10 of the dimensionless axial coordi-
nate X* are considered in all figures reporting the axial dis-
tributions of Nu and of faPe, respectively.

As can be seen by inspection of the axial distributions of
Nuc reported in Figs. 3(a) and 4(a), with constant property
liquids almost fully developed conditions are reached at a
value of X* around 0.02 for parallel plates and in the range
tant property flows in ducts of different cross-sections

r Trapezoidal Hexagonal Annular

0.414 0.828 0.5 0.75 1

2.7701 3.3247 5.7380 5.1557 4.8616
5.7382 4.8608

14.0555 15.0267 23.8125 23.9670 24.0000
14.053 15.021 23.813 23.967 24
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between 0.05 and 0.1 for the other geometries. The same
conclusions can be reached after inspecting the axial distri-
butions of (faPe)c reported in Figs. 3(b) and 4(b). Axial dis-
tributions of Nuc for circular, rectangular, trapezoidal and
hexagonal cross-sectional geometries are very similar, lead-
ing to fully developed values of the Nusselt number (Nu1)c

ranging between 2.77 (trapezoidal) and 3.66 (circular),
while the parallel plate duct exhibits a rather different
behaviour ((Nu1)c = 7.54). Similar axial distributions
of Nuc are also found for the concentric annular ducts
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considered here, whose values of (Nu1)c range between
4.86 and 5.73. As can be seen in Fig. 3(b) and Fig. 4(b),
axial distributions of (faPe)c are nearly the same for ducts
of circular, rectangular, trapezoidal and hexagonal cross-
sections, with fully developed (fPe)c ranging between
70.26 and 80.00, and for parallel plates and the concentric
annular ducts considered here, with fully developed (fPe)c

ranging between 119.07 and 120.00.
The effects of temperature dependent viscosity on the

local Nusselt number are illustrated in Figs. 5(a)–13(a),
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where axial distributions of the ratio Nu/Nuc for ducts of
different cross-sections are presented. As can be seen, the
ratio Pre/Prw significantly affects the Nusselt number as
long as the flow develops, while its influence gradually
decreases as isothermal flow conditions are approached.
These conditions are reached at values of X* in the ranges
between 0.1 and 0.2 for parallel plates and between 0.2 and
0.5 for the other geometries, i.e, at values of X* significantly
higher than those of the thermal entrance lengths in the
corresponding flows of constant property fluids. The
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comparison of axial distributions of Nu/Nuc for a given
cross-sectional geometry and different values of the ratio
Pre/Prw shows the same qualitative behaviour. The val-
ues of Nu/Nuc are always larger that 1 for fluid heating
(Pre/Prw > 1) and smaller than 1 for fluid cooling
(Pre/Prw < 1). All curves reach unity for sufficiently large
values of X*. However, there is a noticeable change in the
slope of the curves around X* = 0.003 for parallel plates
and concentric annular ducts and around X* = 0.02 for
the other geometries. We verified that this change in the
slope of the Nu/Nuc profiles always occurs at the axial posi-
tion where the value of temperature at the duct axis t0 starts
departing from te, i.e., where the thermal boundary layers
developing on opposite walls of the ducts meet together.

The effects of temperature dependent viscosity on the
apparent friction factor are illustrated in Figs. 5(b)–13(b),
where axial distributions of the ratio faPe/(faPe)c for ducts
of different cross-sections are presented. As can be seen,
asymptotic values [faPe/(faPe)c]1 of the ratio faPe/(faPe)c

only depend on Pre/Prw, no matter which cross-sectional
geometry is considered. In fact, we can write

faPe
ðfaPeÞc

� �
1
¼ fPe
ðfPeÞc

¼ fRewPrw

ðfReÞcPrm

¼ Prw

Prm

ð17Þ

since it is fRew = (fRe)c = C, where C is a constant
whose value depends on the particular cross-sectional
geometry considered [1]. Therefore, the asymptotic values
½faPe=ðfaPeÞc�1 ¼ 2;

ffiffiffi
2
p

; 1=
ffiffiffi
2
p

and 1/2 are obtained for
Pre/Prw = 1/4, 1/2, 2 and 4, respectively, as shown in Figs.
5(b)–13(b). Instead, in the region close to the entrance,
similar axial distributions of faPe/(faPe)c are obtained for
different cross-sectional geometries (see Figs. 5(b)–10(b)),
with the exception of concentric annular ducts with the
outer wall adiabatic, which exhibit a very different behav-
iour (see Figs. 11(b)–13(b)). As expected, we always have
faPe/(faPe)c > 1 for fluid cooling (Pre/Prw < 1, that is,
Prw/Prm > 1) and faPe/(faPe)c < 1 for fluid heating
(Pre/Prw > 1, that is, Prw/Prm < 1). In fact, in the first case
the pressure drop is higher than that corresponding to the
flow of a constant property fluid, due to the higher values
of viscosity in the near wall region (lw > lm), while the
opposite occurs in the second case (lw < lm). Since the ef-
fect of the ratio Pre/Prw increases for increasing X*, the
profiles of faPe/(faPe)c tend to diverge from unity, at first
slightly, up to a value of X* around 0.01 for parallel plates
and around 0.05 for the other geometries, and then more
markedly, up to X* ffi 1. As already pointed out, a different
behaviour is observed in the regions close to the entrance of
concentric annular ducts with the outer wall adiabatic,
where we have faPe/(faPe)c < 1 for fluid cooling and faPe/
(faPe)c > 1 for fluid heating. This behaviour can be
explained if we consider that the pressure drop depends
on shear stresses acting both at the inner and outer walls,
which in turn depend on local temperatures through the
corresponding values of viscosity. Since in the first part
of the duct the fluid temperature is close to tw near the in-
ner wall and is equal to te near the outer wall, which is
adiabatic, the flow is almost isothermal near the outer wall,
while a (thin) thermal boundary layer is developing along
the inner wall. The influence of the adiabatic wall on the
pressure drop prevails over that of the wall maintained at
tw, thus producing the above mentioned behaviour. After
the flow develops enough (beyond X* = 0.01) to cause the
fluid temperature at the outer wall to become close to tw,
the influence of the inner wall starts prevailing, thus leading
to the same behaviour observed for the other cross-
sectional geometries when isothermal conditions are
approached.

The differences between the local values of Nu/Nuc and
faPe/(faPe)c found for different values of the ratio Pre/Prw

can be explained taking into account velocity and temper-
ature distributions over the cross-sections. Radial profiles
of the dimensionless axial velocity U = u/ue and of the
dimensionless temperature T = (t � tw)/(te � tw) at selected
axial locations for the considered values of Pre/Prw are
reported in Figs. 14–16 for circular ducts, concentric annu-
lar ducts with ro/ri = 0.5 and parallel plate channels. Vari-
ables R = r/ro and Z = z/Dh represent the dimensionless
radial and transverse coordinates, respectively. In order
to consider comparable situations, dimensionless velocity
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and temperature profiles reported in Figs. 14–16 refer to
cross-sections where the bulk temperature tb coincides with
the reference temperature of the fluid tm, so that Tb =
(tb � tw)/(te � tw) = 0.5. For Pre/Prw = 4, 2, 1, 1/2 and
1/4, the corresponding values of the dimensionless axial
coordinate are X* = 0.02900, 0.03113, 0.03354, 0.03615
and 0.03894 for circular ducts, X* = 0.07229, 0.07615,
0.08015, 0.08416 and 0.08819 for concentric annular
ducts with ro/ri = 0.5 and X* = 0.01808, 0.01884, 0.01967,
0.02052 and 0.02129 for parallel plate channels, respectively.
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As can be seen, viscosity variations with temperature signifi-
cantly affect the values of velocity and temperature gradients
at the duct walls, leading to rather different Nusselt numbers
and apparent friction factors, as discussed above. Similar
conclusions can be reached by looking at Fig. 17, where
transverse distributions of the dimensionless velocity U, at
the axial position where Tb = 0.5, are shown for three-
dimensional flows in ducts of trapezoidal cross-section.
The corresponding values of the dimensionless axial coordi-
Fig. 17. Flows of temperature dependent viscosity fluids with Prm = 5 in trapez
the axial positions where Tb = 0.5 for (a) Pre/Prw = 1/4, (b) Pre/Prw = 1 and
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To show the influence of the temperature dependence of
viscosity on the hydrodynamic entrance length, the axial
distributions of dimensionless velocity U0 and temperature
T0 at the center of the cross-section of circular ducts and
parallel plate channels are presented in Fig. 18 for all the
values of Pre/Prw considered. It must be pointed out that
these cross-sectional geometries represent the limiting cases
oidal ducts: transverse distributions of the dimensionless axial velocity U at
(c) Pre/Prw = 4.
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corresponding to the maximum and minimum values of the
ratio P/A of the wetted perimeter over the area of the cross-
section. Therefore, an intermediate behaviour can be
expected for ducts with different cross-sectional geometries.
It is apparent that, in the case of temperature dependent
viscosity, fully developed values of the dimensionless axial
velocity component U0 are reached only where the flow
becomes nearly isothermal, that is, at the distance from
the inlet where the centerline temperature approaches the
wall temperature. This distance appears to be nearly inde-
pendent of the value of Pre/Prw and is about one order of
magnitude larger than the hydrodynamic entrance length
in the corresponding constant property flow [1,2,23]. We
can also notice that the value of U0 is lower than its asymp-
totic value everywhere in the case of fluid heating, while it
exhibits an overshoot in the case of fluid cooling. Besides,
the more the ratio Pre/Prw differs from 1, the larger the dif-
ferences are between local values of U0 for flows of fluids
with temperature dependent viscosity and the correspond-
ing values for flows of constant property fluids.

Finally, the axial distributions of the dimensionless cen-
terline temperature T 00 ¼ ðt0 � twÞ=ðtb � twÞ and of the
dimensionless bulk temperature Tb are reported in
Fig. 19 with reference to the same cross-sectional geome-
tries and values of Pre/Prw considered in Fig. 18. It is
apparent that, in the case of temperature dependent viscos-
ity, also thermally fully developed conditions, character-
ized by constant values of T 00, i.e., by dT 00=dX � ¼ 0, are
reached where the fluid is nearly at the wall temperature,
at distances from the inlet which are about one order of
magnitude larger than thermal entrance lengths for the cor-
responding constant property flows.

4. Conclusions

A parametric investigation has been carried out on the
effects of temperature dependent viscosity in simulta-
neously developing laminar flow of a liquid in straight
ducts of arbitrary but constant cross-sections. Viscosity
has been assumed to vary with temperature according
to an exponential relation, while the other fluid proper-
ties have been held constant. Different cross-sectional
geometries have been considered, corresponding both to
axisymmetric (circular and concentric annular) and to
three-dimensional (rectangular, trapezoidal and hexagonal)
duct geometries. Reference has been made to uniform wall
temperature boundary conditions. Numerical results con-
firm that, in the laminar forced convection in the entrance
region of straight ducts, the effects of temperature depen-
dent viscosity cannot be neglected in a wide range of oper-
ative conditions.
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